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Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

2. Break Hold and wait: Circular wait

Safety & Liveness

Deadlocks

Resource Allocation Graphs holds
(Silberschatz, Galvin & Gagne)

RAG = {V,E}; Resource allocation graphs consist of vertices V and edges E.
V = P UR; Vertices V can be processes P or Resource types R.

with processes P = {Py,....P,}

and resources types R = {Ry....Ry}

E. UE, UE,; Edges E can be “claims” E,, “requests” £, or “assignments”

with claims E = {

requestsE = { ..

andassignments £, = { — ..} claims
Note: any resource type  can have more than one instance of a resource.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1= No circular dependency s no deadlock:

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process - while actual requests are blocking,

requests

Safety & Liveness

Safety & Liveness

Deadlocks
Deadlock prevention

(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).
2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :

Deadlocks
Deadlock prevention
Mutual exclusion . Break Mutual exclusion:

Hold and wait By replicating critical resources, mutual exclusion becomes un-
No pre-emption necessary (only applicable in very specific cases).

_ Circular wait | . Break Hold and w:

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:

Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered

. Break Circular waits:

Safety & Liveness

(Remove one of the four necessary deadlock conditions)

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1 Two process, reverse allocation deadlock:

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Two circular dependencies i deadlock:
1T 27 37
aswellas: 5> 5

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

w Assignment of resources such that
circular dependencies are avoided:

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:

If some processes are deadlocked
then there are cycles in the resource allocation graph.

w Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

= Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

Safety & Liveness

Deadlocks
Deadlock prevention
(Remove one of the four necessary deadlock conditions)
1. Break Mutual exclusion:

By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

Mutual exclusion
Hold and wait
No pre-emption
. Break Hold and wait: Circular wait

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Safety & Liveness

Deadlocks
Edge Chasing

(for the distributed version see Chandy, Misra & Haas)

blocking processes:
& Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

nodes on probe reception:

w Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources —
while updating the second and third entry in the probe.

a process receiving its own probe:
(blocked-id = targeted-id)

w Circular dependency detected.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked

ww Actual deadlock identified




Safety & Liveness

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

i Potential deadlock identified

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] & False;
2.While Ji: —Completed [i]
and Vj: Requested [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j]< Simulated_Free [j]+ Allocated [i, jl;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is currently
else all processes i with —Completed [i] are involved in a deadlock!.

Safety & Liveness

Deadlocks
Deadlock recovery

A deadlock has been detected = now what?

Breaking the circular dependencies can be done by

w Either pre-empt an assigned resource which is part of the deadlock.
w or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Important implications:
1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3. If any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the final global commitment.

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

w Potential deadlock identified
—yet clearly not an actual deadlock here

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?

(multiple instances per resource)

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] < False;

2.While Ji: —Completed [i]
and Vj: Claimed [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j] < Simulated_Free [j] +Allocated [i, jJ;
Completed [i] < True;
3.1f Vi: Completed [i] then the system is

A system is a system in which future deadlocks can be
avoided assuming the current set of available resources.

Safety & Liveness

Deadlocks
Deadlock strategies:

Deadlock prevention
System prevents deadlocks by its structure or by full verification

Deadlock avoidance
System state is checked with every resource assignment.

Deadlock detection & recovery
Detect deadlocks and break them in a‘coordinated’ way.

Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer,

Safety & Liveness

Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:
An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

« once,

« multiple times,

 infinitely often.

Observations:

« Idempotent operations are often atomic, but do not need to be.
« Atomic operations do not need to be idempotent.

. perations can ease the req for syndl

Deadlocks
Banker’s Algorithm

Check potential future system safety by simulating a granted request:
(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
Free = Free - Request;
Claimed := Claimed - Request;
Allocated := Allocated + Request;

if (checked by e.g. Banker’s algorithm) then
w Grant request

= Restore former system state: (Free, Claimed, Allocated)
end if;
end if;

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performingit ..
« (by ‘awareness) ... are not aware of the existence of any other active

process, and no other active process is aware of the activity of the

processes during the time the processes are performing the atomic operation.

« (by communication) ... do not communicate with other
processes while the atomic operation is performed
« (by means of states) ... cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.
Short:
An atomic operation can be considered to be
indivisible and instantaneous.

Safety & Liveness

Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
with which a system conforms to its specification.
low failure rate.

Failure ::=a deviation of a system from its specification.
Error = the system state which leads to a failure.

Fault ::=the reason for an error.

Safety & Liveness

Deadlocks
Banker’s Algorithm

There are processes P; € {P;,...,P,} and resource types R € {Ry,...,R;, } and data structures:

* Allocated [i, j]
& the number of resources of type j currently allocated to process i
Free [j]
& the number of currently available resources of type j.
Clained (i, j]
& the number of resources of type j required by process i eventually.
Requested [i,
o the number of currently requested resources of type j by process i.
Completed [i]
& boolean vector indicating processes which may complete.
Simulated_Free [j]

Number of available resources assuming that complete processes deallocate their resources.

Safety & Liveness

Deadlocks
Distributed deadlock detection

Observation: Deadlock detection methods like Banker's Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

& Therefore a distributed version needs to:

e Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

& Organize the nodes in an adequate topology (e.g. a tree)

we Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

v Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.

Safety & Liveness

Atomic & idempotent operations

Atomic operations
Atomic (lpeﬂlltﬂs J

Indivisible |

Safety & Liveness

Reliability, failure & tolerance

Faults during different phases of design

* Inconsistent or inadequate specifications
& frequent source for disastrous faults

* Software design errors
& frequent source for disastrous faults

* Component & communication system failures
& rare and mostly predictable
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Reliability, failure & tolerance

Faults in the logic domain

¢ Non-termination / -completion

n'in a deadlock state, blocked fo in an infin p
handle the failure

* Range violations and other inconsistent states
& Run-time environment level exception handling required to handle the failure

e Value violations and other wrong results
s User-level exception handling required to handle the failure

512
_‘Ixfl Safety & Liveness
Reliability, failure & tolerance
Fault tolerance

e Full fault tolerance

the system continues to operate in th
without an; unctional
— even though this might reduce the achievable total operation time.

¢ Graceful degradation (fail soft)
the system continues to operate in t nce of ‘fon rror condition:

while accepting a pas or performance.

* Fail safe
the system halts and maintains its integrity.

= Full fault tolerance is not maintainable for an infinite operation time!

eful degradation might have multiple levels of reduced functionality.

Safety & Liveness
Reliability, failure & tolerance
Faults in the time domain

* Transient faults

* Intermittent faults

& Faults of a certain regularity ..

* Permanent faults

Safety & Liveness
Reliability, failure & tolerance

Observable failure modes

Failure modes

very hard to handle

i

N

require careful analysis Time domain

et

] [ Value domain

& Faults which stay ... the easiest to find
(omssion)

Safety & Liveness
Summary
Safety & Liveness

o Liveness
« Faimess

* Safety

 Deadlock avoidance
* Deadl:

* Atomic & Idempotent operations
« Definitions & implications

* Failure modes
initic

Safety & Liveness

Reliability, failure & tolerance

Fault prevention, avoidance, removal, ...

and/

Fault toleranc







