Hem aenoay
uonduia-aid oN
uem pue pjoH
UoISnX [N 1UOISN[OX3 [emnyy Yealg “|
(SUONIPUOD 3D0|pEIP AILSSIIBU INOJ DY) JO DUO IAOLWSY)
uonuana.d yoojpeaqg

syojpeaq

ssauaAIT A19jes

01 a5e0[01 UED J[SI) S5
:uondwa-aid oN ‘¢

bos jenuanbas) 221n0sa1 1ayioue ym ‘92an0501 © i de ssasoid e

:Mem pue pjoH
AIsnoauenwis pasn aq J0uUE> $921N05A1
:UoISNIXd [eMNy “|

SUOJIPUOD 3D0[peap AIessadaN

sypojpeaq

ssouanI] p A1oses

‘zd pua f1d pus
1) Juauelels £z Juausiers

s82.n0sa. [Te fordus —- s532.n0sa. [Te fordus —-

tv Jususiers X Jususiels
tzd ss9204d t1d sse204d

L =t adoydewss : z7anJasaU ‘|TBAISSBI JEn

190 9SI9AD4 Ul S904N0S3 SUINIISY

uoneZIUOIYIUAS SpIEMOL

ssouaAIT A19Jes

Jood 01 prey A1aa awodaq ued sapsadoid ssouany Sunsasawuy =1
‘(Ssaulrey) J9Ad10) pake|ap aq 0} S1 wdysAs ay3 jo Jied ON
[enjuand pake|dsip 9q 0} SPAAU WIA)SAS DY) JO 2ILIS DY »
‘Ajlenjuans 232]dwod 0} pasu sysanbay «
:sojdwexg
(an11 A}s UBY) |11 pUE) IOy Aj/enIuaAa S30P D) 1Ry} SuBaW D> 21AYM

(SNOC & ((S*1) $9559201d \/ (1) d)
ssonsadoad ssauanr]

Swd3SAS JUa4INdUOI Ul S)AIDU0D SSBUIIDII0D)

uonnaday

SSaUaAIT % A19eS

2unpnns s Aq $4p0|peap suaAsid weisks oy e
uonuanaid ydo|peaq

pousisse Ajjenoe a1e 59210591 AU 21049q PHISYD 1 21e3s WlsAs Sunynsai oy e
2ouepIOAR YD0|pEaq

Aem pajeuIpi00o e Ui wasks oy 1940391 pue sassadoid paxyoojpeap puly 1
A19A0231 3 UONDPIAP YDO|pEa

- 42ndwon ay) apAd-1amod ‘sassado1d aasuodsaiun e1sal 10 |1y &1
11B)S3I %9 2dURIOUS| o

:sa18a3e.)s yooipeaq

syoojpeaq

ssouanI] p A194es = T

oy 51 dde ssav01d e
:NeM pue pjoH T

“AlsnoduelNwIS pasn oq 10uUED 59240521
UOISNOXD [emN ‘|

ISUONIPUOD YD0[peap AIeSSadaN

sypojpeaq

ssouanI] p A194es = T
oLy

;UONBZIUOIYDUAS JO SWIOJ 931) 3D0|-Peap A[[BINIONIIS 3ISY) DIB 10 “** =1
WAL DA[OSDI O} MOH =1

;WAY) pulj 0) MOH =1

;wiay) 1paid 0) MOH =1

(Aysadoud Ajajes [enuad auo si $320|peap Jo uoluarald / duBpPIOAY)
syoojpeaq
0] ped] Aew UONBZIUOIYDIUAS JO SWLIOJ JSON
sypojpeaq

ssauaAIT ® A19JeS = T

99v

WaISAS JUBLINILOD B} JO BIIS JUBLIND L) S § PUE
(an11 Ae1s UBY) (|1 PUE) Ploy Ajjemuara S30p O 1By} SUBAW D> BIYM
(SNOC < ((S°1) s9559201d v/ (1) d)
:sansadoad ssauanry
ploy sAemje s30p D 18y} SUBAW)] 2194M
(S'NOO « ((S°1) s9s59201d v/ (1) d)
:sansadoad Ajages

2In]1e} B PAIIPISUOD UDAD 10 PAPU
:SWI)SAS JUSIINDUOD Ul $S9UIDDLI0D JO 5)dadU0d papualxy

SwasAs Jua.LINdU0I Ul SAIDU0D SS3UIALI0D)

uonnaday

SsauaAIT ' A1oes

iAjdde suonipuod asay) jje j1 ‘padd0|peap awo0daq ABwW Wa)SAS v =1
“2UO 1XoU DY) AQ 921N0S1 © JO 9SER]a1 10} S)1EM 559201d A1 DIDYM
‘sis1x 53553301d 4O I51] BuL € 1JIRM JRINDALD H
0 tpardwa-aid e 5921
:uondwa-aid oN ¢
sanbai [enuanbas) 921n0sa1 Jayioue Suipjoy s1 1t ajiym ‘@2inosal e 1oy soyjdde ssadoud e
;MM pue pjoH
“Ajsnoaueynwis posn ® $924n0501
:UOISNIXD [emnpy |

:SUONRIPUOD 3O0[peap AIessadaN

syojpeaq

ssauaAlT A19jes

“A|snoauelNWIS Pasn 9q 10UUE) $91N0SDI
:UOISNIXd [eNNy “|

:SUOJIPUOD 3D0[peap AIeSsadaN

syojpeaq

ssauaAIT A19jes

(suonedijdde 124135 10 swd)sAs pappaquia / awn-[eas ui [edidAy)
swajsAs qeded 921} 10 ssauaaIsuodsal pay1dads o

(SsuonIpuod 8z}, pue ,Yieap JUs|is, JO SWIOJ I9Y10 pue)
I PAsSaIPPE 9 0] 1 5)D0[PBAP JO DIUISY

passaippe sey =1 (SUOISI||0D 924N0SAI OU) UOISN|IXD [BMINN »
:sojdwexq

U sAemje $90p O Jey) sueaw O [sayM

(SO0 & ((S) 525592044/ (1)d)

SwaSAs Jua41NdU0I Ul S)AIIU0I SSUIIDII0D)

Supisinoy

ssauaAIT A19jeS

-[eD ‘weyeiqy ‘Z1eysIaq|iS
[L00zZIRYSI9q]

(@) L"[oA €861 (SDOL) swidy 9007 [[eH-2211UD1d ‘U0NIPa puodas
-sAs 1eandwiod uo suondesues] SunuuwresSosg painguy
uonalap Yo0|pEIP PANGUISI ~s17 pue Jua4ndU0) J0 sa(diduLLY

eane] ‘seep 3 Aapede] eIy S Apueyd W uy-uag

[e861ApueyD] [900zuag]

49pdeyd sy 10j s2u1342Y

SSaUaAIT § A19ES

*5921n0521 95LAD1 UED sa201d oy Ajuo ‘pard ouue s921n0sa1
uondwa-aid oN ¢

bas) a21n0sa1 oy 1ym ‘92un0sa1 B de sso201d e
eM pue pjoH T

A1sno:
SUONIPUOI)D0]peap A1essadaN

syo[peaq

ssouanI] p A194es

uonenis ypojpeap e Aq pamo
[T1A]18]={Z'X | WT¥ [DVI{WY | ZAX | D'VI{wy | D'a'v | Z'X]
W T NZ A~ XD~ g~ visuonesado jo

ted pud f2d pud
W uBuRIeIS £ juauetels

£y quauazels ty quauazels X quauazels
feq ssad0ud tzq ssad0ud f1d ssad0ud

f1 =i aJoydewds : £7aAJaS3U ‘ZTAAJISIU ‘|TOAIISL JEA

safpuapuadap Jendir)

uoneziuoyduAs spaemoy

ssouanI] p A194es ﬂwﬂT

89y

1M 553201d 19430 Aue 9.10; O & YO JN0-Isily ‘ul-)salg o

“(SW1SAS PAINGUISIP U SSAUIIT) UOWILI0) DIUO UBY) D10W PaNUTIE
a21n0sa1 awes ay) pey ssad01d 1410 Aue D6 < ¥o Buniem Jeaur] «

uotyo Apiuyur sisanbas sseooid e 1 %) D6« ¥o0ssIUILR) SUoNS o

“Ajenunuo> sisanbas ssadoud e AT DO & YOO SSAUMRY RIM @

(an11 Ae1s UBYY (1M PUE) Ploy Aj/enuana S20p O 1eY) SUBW D> BIAYM

(SO < ((S'1) s95592014 v/ (1) d)

ssoure]

ssauaAl]

ssauaAIT ® A19JeS

AJISIBAIUN [BUONHEN UBI[RASNY Y] - JDWWIZ Y MmN

SSQUaAIT R Alojes

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

2. Break Hold and wait: Circular wait

Safety & Liveness

Deadlocks

Resource Allocation Graphs holds
(Silberschatz, Galvin & Gagne)

RAG = {V,E}; Resource allocation graphs consist of vertices V and edges E.
V = P UR; Vertices V can be processes P or Resource types R.

with processes P = {Py,....P,}

and resources types R = {Ry....Ry}

E. UE, UE,; Edges E can be “claims” E,, “requests” £, or “assignments”

with claims E = {

requestsE = { ..

andassignments £, = { — ..} claims
Note: any resource type can have more than one instance of a resource.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1= No circular dependency s no deadlock:

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process - while actual requests are blocking,

requests

Safety & Liveness

Safety & Liveness

Deadlocks
Deadlock prevention

(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).
2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :

Deadlocks
Deadlock prevention
Mutual exclusion . Break Mutual exclusion:

Hold and wait By replicating critical resources, mutual exclusion becomes un-
No pre-emption necessary (only applicable in very specific cases).

_ Circular wait | . Break Hold and w:

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:

Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered

. Break Circular waits:

Safety & Liveness

(Remove one of the four necessary deadlock conditions)

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1 Two process, reverse allocation deadlock:

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Two circular dependencies i deadlock:
1T 27 37
aswellas: 5> 5

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

w Assignment of resources such that
circular dependencies are avoided:

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:

If some processes are deadlocked
then there are cycles in the resource allocation graph.

w Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

= Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

Safety & Liveness

Deadlocks
Deadlock prevention
(Remove one of the four necessary deadlock conditions)
1. Break Mutual exclusion:

By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

Mutual exclusion
Hold and wait
No pre-emption
. Break Hold and wait: Circular wait

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Safety & Liveness

Deadlocks
Edge Chasing

(for the distributed version see Chandy, Misra & Haas)

blocking processes:
& Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

nodes on probe reception:

w Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources —
while updating the second and third entry in the probe.

a process receiving its own probe:
(blocked-id = targeted-id)

w Circular dependency detected.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked

ww Actual deadlock identified

Safety & Liveness

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

i Potential deadlock identified

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] & False;
2.While Ji: —Completed [i]
and Vj: Requested [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j]< Simulated_Free [j]+ Allocated [i, jl;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is currently
else all processes i with —Completed [i] are involved in a deadlock!.

Safety & Liveness

Deadlocks
Deadlock recovery

A deadlock has been detected = now what?

Breaking the circular dependencies can be done by

w Either pre-empt an assigned resource which is part of the deadlock.
w or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Important implications:
1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3. If any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the final global commitment.

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

w Potential deadlock identified
—yet clearly not an actual deadlock here

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?

(multiple instances per resource)

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] < False;

2.While Ji: —Completed [i]
and Vj: Claimed [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j] < Simulated_Free [j] +Allocated [i, jJ;
Completed [i] < True;
3.1f Vi: Completed [i] then the system is

A system is a system in which future deadlocks can be
avoided assuming the current set of available resources.

Safety & Liveness

Deadlocks
Deadlock strategies:

Deadlock prevention
System prevents deadlocks by its structure or by full verification

Deadlock avoidance
System state is checked with every resource assignment.

Deadlock detection & recovery
Detect deadlocks and break them in a‘coordinated’ way.

Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer,

Safety & Liveness

Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:
An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

« once,

« multiple times,

 infinitely often.

Observations:

« Idempotent operations are often atomic, but do not need to be.
« Atomic operations do not need to be idempotent.

. perations can ease the req for syndl

Deadlocks
Banker’s Algorithm

Check potential future system safety by simulating a granted request:
(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
Free = Free - Request;
Claimed := Claimed - Request;
Allocated := Allocated + Request;

if (checked by e.g. Banker’s algorithm) then
w Grant request

= Restore former system state: (Free, Claimed, Allocated)
end if;
end if;

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performingit ..
« (by ‘awareness) ... are not aware of the existence of any other active

process, and no other active process is aware of the activity of the

processes during the time the processes are performing the atomic operation.

« (by communication) ... do not communicate with other
processes while the atomic operation is performed
« (by means of states) ... cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.
Short:
An atomic operation can be considered to be
indivisible and instantaneous.

Safety & Liveness

Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
with which a system conforms to its specification.
low failure rate.

Failure ::=a deviation of a system from its specification.
Error = the system state which leads to a failure.

Fault ::=the reason for an error.

Safety & Liveness

Deadlocks
Banker’s Algorithm

There are processes P; € {P;,...,P,} and resource types R € {Ry,...,R;, } and data structures:

* Allocated [i, j]
& the number of resources of type j currently allocated to process i
Free [j]
& the number of currently available resources of type j.
Clained (i, j]
& the number of resources of type j required by process i eventually.
Requested [i,
o the number of currently requested resources of type j by process i.
Completed [i]
& boolean vector indicating processes which may complete.
Simulated_Free [j]

Number of available resources assuming that complete processes deallocate their resources.

Safety & Liveness

Deadlocks
Distributed deadlock detection

Observation: Deadlock detection methods like Banker's Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

& Therefore a distributed version needs to:

e Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

& Organize the nodes in an adequate topology (e.g. a tree)

we Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

v Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.

Safety & Liveness

Atomic & idempotent operations

Atomic operations
Atomic (lpeﬂlltﬂs J

Indivisible |

Safety & Liveness

Reliability, failure & tolerance

Faults during different phases of design

* Inconsistent or inadequate specifications
& frequent source for disastrous faults

* Software design errors
& frequent source for disastrous faults

* Component & communication system failures
& rare and mostly predictable

508
_‘!lﬂ Safety & Liveness

Reliability, failure & tolerance

Faults in the logic domain

¢ Non-termination / -completion

n'in a deadlock state, blocked fo in an infin p
handle the failure

* Range violations and other inconsistent states
& Run-time environment level exception handling required to handle the failure

e Value violations and other wrong results
s User-level exception handling required to handle the failure

512
_‘Ixfl Safety & Liveness
Reliability, failure & tolerance
Fault tolerance

e Full fault tolerance

the system continues to operate in th
without an; unctional
— even though this might reduce the achievable total operation time.

¢ Graceful degradation (fail soft)
the system continues to operate in t nce of ‘fon rror condition:

while accepting a pas or performance.

* Fail safe
the system halts and maintains its integrity.

= Full fault tolerance is not maintainable for an infinite operation time!

eful degradation might have multiple levels of reduced functionality.

Safety & Liveness
Reliability, failure & tolerance
Faults in the time domain

* Transient faults

* Intermittent faults

& Faults of a certain regularity ..

* Permanent faults

Safety & Liveness
Reliability, failure & tolerance

Observable failure modes

Failure modes

very hard to handle

i

N

require careful analysis Time domain

et

] [Value domain

& Faults which stay ... the easiest to find
(omssion)

Safety & Liveness
Summary
Safety & Liveness

o Liveness
« Faimess

* Safety

 Deadlock avoidance
* Deadl:

* Atomic & Idempotent operations
« Definitions & implications

* Failure modes
initic

Safety & Liveness

Reliability, failure & tolerance

Fault prevention, avoidance, removal, ...

and/

Fault toleranc

